Cry1F resistance among lepidopteran pests: a model for improved resistance management?
نویسندگان
چکیده
The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize.
منابع مشابه
Baseline susceptibility of tobacco budworm (Lepidoptera: Noctuidae) to Cry1F toxin from Bacillus thuringiensis.
Transgenic cotton, Gossypium hirsutum L., lines expressing both Cry1F and Cry1Ac insecticidal proteins from Bacillus thuringiensis (Bt) have been commercially available in the United States since 2005. Both Bt proteins are highly effective against tobacco budworm, Heliothis virescens (F.), and other lepidopteran pests of cotton. Although CrylAc has been available in Bt cotton since 1996, the Cr...
متن کاملCry1F Resistance in Fall Armyworm Spodoptera frugiperda: Single Gene versus Pyramided Bt Maize
Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistan...
متن کاملEffect of Cry1F maize on the behavior of susceptible and resistant <i>Spodoptera frugiperda</i> and <i>Ostrinia nubilalis</i>
Understanding the behavior of pests targeted with Bacillus thuringiensis Berliner (Bt) crops is important to define resistance management strategies. Particularly the study of larval movement between plants is important to determine the feasibility of refuge configurations. Exposure to Bt maize, Zea mays L. (Poaceae), has been suggested to increase larval movement in lepidopteran species but fe...
متن کاملCross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis delta-endotoxins.
Corn plants expressing the toxin from Bacillus thuringiensis (Berliner) have proven to be effective in controlling lepidopteran pests such as the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). Several Bt toxins are being tested and incorporated into crop genomes, although tests for cross-resistance among different toxins have been limited by a lack of resistant colon...
متن کاملSusceptibility to the Cry1F toxin of field populations of Sesamia nonagrioides (Lepidoptera: Noctuidae) in Mediterranean maize cultivation regions.
Maize hybrids expressing the Cry1F toxin provide efficient control of lepidopteran pests. The Mediterranean corn borer, Sesamia nonagrioides (Lefèvre), is one of the most damaging pests of maize in the Mediterranean basin. In this work we firstly determined the efficacy of maize hybrids expressing the Cry1F toxin (event TC1507) to control neonates of S. nonagrioides. Leaf tissue feeding bioassa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in insect science
دوره 15 شماره
صفحات -
تاریخ انتشار 2016